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Abstract

In this paper, we are going to discuss the problem whether how we can check the conformality of a
Finsler manifold to a Berwald manifold. The method is based on a differential 1-form constructing on
the underlying manifold by the help of integral formulas such that its exterior derivative is conformally
invariant. If the Finsler manifold is conformal to a Berwald manifold, then the exterior derivative
vanishes. This gives the following necessary condition: the differential form is closed and, at least
locally, it is exact as the exterior derivative of a scale function for testing the conformality. A necessary
and sufficient condition is also given in terms of a distinguished linear connection on the underlying
manifold – it is expressed by the help of canonical data. In order to illustrate how we can simplify the
process in special cases Randers manifolds are considered with some explicit calculations.
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Introduction

It is well known due to Hashiguchi and Ichijȳo that a Finsler manifold is conformal to a
Berwald manifold if and only if it is a Wagner manifold[9] (see also[22,24]). The Wagner
manifolds form an important class of the so-called generalized Berwald manifolds admitting
Finsler connections whose horizontal part depends only on the position – more precisely
there exists a linear connection on the underlying manifold such that the indicatrix hyper-
surfaces are invariant under the parallel transport. Berwald manifolds in the classical sense
are characterized by a similar property of the canonical Berwald connection. If it has zero
(horizontal) curvature, then the Berwald manifold is called a locally Minkowski manifold.

For thetwo-dimensional conformality problem, the original result due to Wagner[29]
states thata Finsler space of dimension 2 is a generalized Berwald space if and only if the
first derivative of the main scalar by the Landsberg angle gives a differential equation of
the form

y′ = f (y) (1)

(see also[13]). It is obviously a necessary condition for a two-dimensional Finsler manifold
to be conformal to a Berwald manifold. Further important results are in Kikuchi’s paper
[11]. He found a conformally invariant Finsler connection for all Finsler spaces satisfying
a certain condition by an excellent idea and the conformal flatness was stated in terms of
this connectionas Matsumoto wrote in his paper[16]. The conformal flatness means that
the manifold is conformal to a locally Minkowski manifold. Note that a positive definite
two-dimensional Berwald manifold must be a locally Minkowski manifold unless it is Rie-
mannian (see Szabó’s observation[18] and[10]). Indeed, in case of dimension 2 Kikuchi’s
results are equivalent to the Matsumoto’s equations[15] (see also[16]). They consist of
necessary and sufficient conditions for a two-dimensional Finsler manifoldwith non-zero
J to be conformal to a Berwald manifold. The Matsumoto’s equations are also differential
equations in terms of the standard two-dimensional setting such as the main scalar and its
derivatives with respect to special vector fields constituting the so-called Berwald frame
(for the original version, see[3,4]). Under the notations of Matsumoto’s paper, the function
J is just the derivative of the main scalar along the parameterized indicatrix curve. In other
words, the condition provides that the right-hand side of the Wagner’s differential equation
(1) is nontrivial. According to this additional property, the system of partial differential
equations for the scale function involvesJ as a divisor although there always exist critical
parameters because of the periodicity of the main scalar along the indicatrix.

In case of the multidimensional Kikuchi’s condition, the problem is essentially similar:
Now we assumedet Wr

k �= 0,where

Wr
k = ∂

∂yi
(L2C2)Bir

k .

Thenthere existsW∗k
j such that

Wr
kW∗k

j = δr
j
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(for the citation, see[11]). Unfortunately, the functionL2C2 is homogeneous of degree
zero. This means that it attains both its (global) maximum and minimum on the tangent
spaces and all of the partial derivatives with respect to the variablesy1, . . . , yn vanish at
such an extremal point.

In what follows, we are going to discuss not only the problem of conformal flatness but
also themultidimensional conformality problemof Finsler manifolds to Berwald manifolds.
The theory will be presented in terms of conformally invariant differential forms construct-
ing on theunderlying manifoldby the help of integral formulas – the only requirement is
that we have a non-Riemannian Finsler manifold under consideration.

1. Preliminaries

1.1. Finsler manifolds

Let M be a connected differentiable manifold equipped with a functionE : TM → R

such that

(i) ∀v ∈ TM \ {0} : E(v) > 0 andE(0) = 0.
(ii) E is homogeneous of degree 2, i.e.∀t ∈ R

+ : E(tv) = t2E(v).
(iii) E is of classC1 on the tangent manifoldTM and smooth except the zero section.
(iv) The fundamental formω := ddJE is nondegenerate.

TheRiemann–Finsler metricof the Finsler manifold (M, E) is defined by the formula

g(JX, JY ) := ω(JX, Y ),

whereX, Y are vector fields onTM andJ is the canonical almost tangent structure on the
tangent bundleπ : TM → M (for the details, see[5,6,20]). The Finsler manifold is called
positive definiteif g is positive definite.

Remark1. In what follows, we suppose that the Finsler manifold is positive definite without
any further comment.

Note that for any pointp ∈ M the restrictiongp := g|TpM is a Riemannian metric on the
“manifold” TpM := TpM \ {0} in the usual sense. The indicatrix hypersurface at the point
p is defined as follows:

Sp := {v ∈ TpM|L(v) = 1, whereE = 1
2L2}.
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1.2. The gradient operator

Let a smooth functionϕ : TM → R be given. Since the fundamental formω is nonde-
generate, there exists a unique vector field gradϕ such that

ιgradϕω = dϕ.

This vector field is called the gradient ofϕ. Note that the gradient vector field is smooth
only on the splitted tangent manifold

TM := TM \ {0}.

In general,differentiability is guaranteed overTM unless otherwise stated.

Lemma 1 ([19]). Letα be a smooth function on the underlying manifold, then

gradαvE = αc,

whereαv := α ◦ π is the vertical lift and

αc : TM → R, αc(v) := v(α)

is the complete lift of the functionα.

1.3. Further formulas[5,6,20]

Let h be the canonical horizontal endomorphism (the so-calledBarthel endomorphism)
associated with thecanonical sprayS := − gradE, we have

ιSω = −dE, h := 1
2([J, S] + 1).

Using the prolongation

gh(X, Y ) := g(JX, JY ) + g(νX, νY ), ν := 1 − h

of the Riemann–Finsler metric alongh theloweredfirstCartan tensorof the Finsler manifold
is defined by the formula

C$(X, Y, Z) := 1
2(LJXJ∗gh)(Y, Z),

where

J∗gh(X, Y ) := g(JX, JY ),
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andL denotes the Lie-derivative (with respect toJX) as usual. The Barthel endomorphism
determines an almost complex structureF on the splitted tangent manifoldTM such that

F ◦ J = h, F ◦ h = −J.

Using the standard technical tools of tangent bundle differential geometry such as the vertical
and complete liftsXv andXc of a vector fieldX ∈ X(M) we define the horizontal liftXh

as follows:

Xh := h(Xc) ⇒ FXv = Xh, FXh = −Xv

(see, e.g.[12,28]). As it is well known,h induces a (in general) nonlinear covariant derivative
operator∇ on the underlying manifold:

∇XY := κ ◦ TY ◦ X,

whereκ is the connection map ofh.

Definition 1. If the induced covariant derivative operator is linear, then the Finsler manifold
is called aBerwald manifold.

1.4. The associated Riemannian metric

Suppose that the manifoldM is orientable and consider a volume formη ∈ ∧n(M). Then
for any pointp ∈ M we have an orientation represented byηp on the tangent spaceTpM.
Let us define the mapping

dµ : p ∈ M → dµp ∈ ∧n(TpM)

as follows:

dµp(Xv
1, . . . , Xv

n) :=


√

det g(Xv
i , Xv

j ) if η(X1, . . . , Xn)(p) > 0,

−
√

det g(Xv
i , Xv

j ) otherwise,

dµp is called the(oriented) volume formon the tangent spaceTpM. Let

µp := ιC dµp

be the induced volume form on the indicatrix hypersurface which provides an orientation
for the manifoldSp. The integral of a (continuous) functionf over Sp is defined as the
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integral of an (n − 1)-form on an oriented manifold of dimensionn − 1 as usual:

∫
Sp

f :=
∫

Sp

fµp.

Actually, the orientation was convenient but not necessary in the definition, etc.(for the
citation, see[30, p. 150]). Indeed, if we change the orientation on the manifoldM, then the
orientation changes on the indicatrix hypersurface. For a moment, let us denote byS+

p and
S−

p the manifoldSp equipped with different orientations, we have that

∫
Sp

f :=
∫

S+
p

fµp = −
∫

S−
p

fµp =
∫

S−
p

f (−µp).

This means that the mapping

p ∈ M →
∫

Sp

f

is well defined even if there could not be nowhere-vanishingn-form on the manifoldM.

Definition 2. Let (M, E) be a positive definite Finsler manifold, theassociated Riemannian
metric is defined by the formula

γ0(X, Y )(p) :=
∫

Sp

g(Xv, Yv)

(for a similar construction, see[21]). The Ĺevi–Civita connection of this metric is called
theassociated linear connection of the Finsler manifold.

Proposition 1 ([27]). The canonical (linear) connection of a positive definite Berwald
manifold is just the L´evi–Civita connection of the associated Riemannian metric.

1.5. Conformal equivalence[8] (see also[19,24])

Two Finsler manifolds (M, E) and (M, Ẽ) are said to beconformally equivalentif there
exists a positive smooth functionϕ : TM → R such that

g̃ = ϕg.

The functionϕ is called thescale functionor theproportionality function. If g̃ = ϕg, then

Ẽ = 1
2 g̃(C, C) = 1

2ϕg(C, C) = ϕE,
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whereC is the so-calledLiouville vector field. It is also well known due to Knebelman that
the scale function between conformally equivalent Finsler manifolds is a vertical lift, i.e.ϕ

always can be written in the form

ϕ = exp◦αv,

whereαv := α ◦ π (see[17]). Therefore

dµ̃p = ϕ(p)n/2 dµp. (2)

We have the transformation formula

S̃ = S − αcC + E gradαv (3)

and, consequently, for any vector fieldX ∈ X(M)

Xh̃ = Xh − 1
2αcXv − 1

2(Xα)vC − EC(F gradαv, Xc) + 1
2XvE gradαv. (4)

Lemma2. Let(M, E)and(M, Ẽ)beconformally equivalent Finslermanifoldsandsuppose
that the function f is homogeneous of degree k, then∫

S̃p

f = ϕ(p)−k/2
∫

Sp

f. (5)

Proof. Since the form dµp has the homogeneity property

LCdµp = n dµp,

and, by our assumption,LCf = kf , the Stokes theorem shows that∫
Bp

f : =
∫

Bp

f dµp = 1

n + k

∫
Bp

LC(f dµp) = 1

n + k

∫
Bp

dιC(f dµp)

= 1

n + k

∫
Sp

ιC(f dµp) = 1

n + k

∫
Sp

fµp = 1

n + k

∫
Sp

f,

whereBp denotes the solid indicatrix body at the pointp. If

j : v ∈ TpM → j(v) := L̃

L
(v)v,

then we have∫
B̃p

f : =
∫

B̃p

f dµ̃p =
∫

j−1(Bp)

(
L̃

L

)n (
L

L̃

)n

(f ◦ j−1) ◦ j dµ̃p

=
∫

Bp

(
L

L̃

)n

(f ◦ j−1)dµ̃p =
∫

Bp

(
L

L̃

)n+k

f dµ̃p
(2)= ϕ(p)−k/2

∫
Bp

f dµp,

and the formula(5) follows immediately. �
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2. Conformally invariant differential forms on the underlying manifold

In what follows, we consider two conformally equivalent Finsler manifolds (M, E) and
(M, Ẽ); let us denote byγ0 andγ̃0 their associated Riemannian metrics, respectively. It can be
easily seen that the associated metrics are also conformally equivalent with a proportionality
function such that its vertical liftϕ = exp◦αv is just the original scale function (between
the Finsler manifolds). Using the transformation formula(4) for the Riemannian manifolds
(M, γ0) and (M, γ̃0) we have that

h̃0 = h0 − 1
2αcJ − 1

2dαv ⊗ C + 1
2dJE0 ⊗ gradv0 α, (6)

whereh̃0 andh0 denotes the induced horizontal structures by the Lévi–Civita connections;
the vector field

gradv0 α := (grad0 α)v

is just the vertical lift of the usual gradient with respect to the Riemannian metricγ0. On
the other hand, the associated spraysS̃0 andS0 are related as follows:

S̃0 = S0 − αcC + E0 gradv0 α. (7)

It is well known that the derivative of the vertical liftαv with respect to an arbitrary semispray
Sgives the complete lift of the functionα. This means that

S̃0Ẽ

Ẽ
= αc + S̃0E

E

(7)= S0E

E
− αc + E0

E
(gradv0 α)E, (8)

and, consequently,

S̃0Ẽ

Ẽ
− S0E

E
+ αc = E0

E
(gradv0 α)E. (9)

Since foranyhorizontal endomorphismh

dhαv = dαv,

and the tensor fielddJ E0
E0

is conformally invariant, the formula

dh̃0
Ẽ

Ẽ
− 1

2

S̃0Ẽ

Ẽ

dJ Ẽ0

Ẽ0
= dh0E

E
− 1

2

S0E

E

dJE0

E0
+ 1

2
αc
(

dJE0

E0
− dJE

E

)
(10)

is a direct consequence ofEqs. (6)and (9). We put

ρ := dh0E

E
− 1

2

S0E

E

dJE0

E0
, f := ln

E0

E
(11)

and the implication

ρ̃ = ρ + 1

2
αc dJf ⇒ dJ ρ̃ = dJρ + 1

2
dαv ∧ dJf (12)
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follows immediately. Consider the vector field

Θ := −E gradf

satisfying the relation

ιΘω = −E df,

an easy calculation shows that

ιJΘω = E dJf ⇒ ‖JΘ‖2 = E dJf (Θ), (13)

where the norm is taken with respect to the Riemann–Finsler metricg.

Lemma 3. The vector fieldJΘ is conformally invariant.

Proof. For any vector fieldX ∈ X(TM)

Ẽ dJ f̃ (X)
(13)= ω̃(JΘ̃, X) = g̃(JΘ̃, JX) = ϕg(JΘ̃, JX).

On the other hand, dJ f̃ = dJf and, consequently,

Ẽ dJ f̃ (X) = ϕ(E dJf (X))
(13)= ϕω(JΘ, X) = ϕg(JΘ, JX),

which implies thatJΘ̃ = JΘ as was to be stated.�

Lemma 4. Keeping our previous notations it follows that

ιΘ̃ dJ ρ̃ − 1

2

S̃Ẽ0

Ẽ0
dJ f̃ = ιΘ dJρ − 1

2

SE0

E0
dJf − 1

2E
‖JΘ‖2 dαv. (14)

Proof. Lemma 3shows that the difference vector fieldΘ̃ − Θ is vertical, i.e.ιΘ̃−Θ dJ ρ̃ = 0
and, consequently,

ιΘ̃ dJ ρ̃ = ιΘ dJ ρ̃ = ιΘ dJρ + 1
2dαv(Θ) dJf − 1

2dJf (Θ) dαv, (15)

where, as we have seen above,‖JΘ‖2 = E dJf (Θ). Since

dαv(Θ) = ω(gradαv, Θ) = −ω(Θ, gradαv) = E gradαv(f )
(3)= (S̃ − S)f,

we haveEq. (14)immediately. �

Definition 3. Let us define the functionσ : M → R as follows:

σ(p) :=
∫

Sp

1

2E
‖JΘ‖2 .
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Lemma 5. Let (M, E) be a generalized Berwald manifold, then the functionσ is strictly
positive or, it is identically zero and the manifold is Riemannian.

Proof. Suppose thatσ(p) = 0, thenJΘ vanishes on the tangent spaceTpM. This means
that there exists a (positive) constantk such that

E|TpM = 1

k
E0|TpM,

and the functionE|TpM is quadratic. Since (M, E) is a generalized Berwald manifold we
have a linear connection∇ on the underlying manifold such that the indicatrix hypersurfaces
are invariant under the parallel transport, i.e.

E|TpM = E|TqM ◦ τ,

whereτ : TpM → TqM is the linear isomorphism induced by the parallel transport with
respect to∇ along a curve joiningp andq. Therefore, foranypointq ∈ M the function

E|TqM = 1

k
E0|TpM ◦ τ−1

is quadratic provided, of course, that the manifold is connected. In other words, the Finsler
manifold (M, E) reduces to a Riemannian manifold such that it is homothetic (conformal
equivalence with a constant scale function) to the associated Riemannian manifold (M, γ0)
– the constant is just the area of the standard Euclidean unit sphere of dimensionn − 1.
ThereforeJΘ = 0 or, in an equivalent form, the functionσ is identically zero as was to be
stated. �

Remark 2. Note again that the Wagner manifolds form an important class of the generalized
Berwald manifolds as those which are conformal to a Berwald manifold. The statement
also holds in case of a locally conformally Berwald manifold all of whose points have a
connected open neighbourhoodU together with a functionα ∈ C∞(U) such that the local
conformal change ˜g := ϕg results in a Berwald manifold; notations as usual. If the function
σ vanishes at a pointp ∈ M then, using the local version ofLemma 5, it also vanishes on
the neighbourhoodU, i.e. σ is strictly positive or it is identically zero provided that the
underlying manifold is connected. We have an interesting alternative reasoning by the help
of Theorem 3which states that the scale function between conformally equivalent Berwald
manifolds must be constant unless they are Riemannian. This result has been proved in our
previous paper[26] as the solution of the generalized Matsumoto’s problem (see also[25]).
As one of the most important consequences it follows thatalthough there is no global scale
function in case of a locally conformally Berwald manifold, the linear Wagner connection
induced by the collection of the local functions is globally well defined because it involves
only the exterior derivatives.According to this observation, the original proof ofLemma 5
works without any modification.
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Definition 4. Let us define the differential 1-formη : X(M) → C∞(M) as follows:

η(X)p :=
∫

Sp

dJρ(Θ, Xc) − 1

2

SE0

E0
dJf (Xc).

Theorem 1. Let (M, E) be a Finsler manifold and suppose that the functionσ is strictly
positive, then the differential form

ϑ := 1

σ

(
dη − 1

σ
dσ ∧ η

)

is conformally invariant.

Proof. According toLemma 2it follows that σ̃ = σ; on the other hand, byLemma 4

η̃(X)p =
∫

S̃p

dJρ(Θ, Xc) − 1

2

SE0

E0
dJf (Xc) − σ(p)Xp(α)

=(5)
∫

Sp

dJρ(Θ, Xc) − 1

2

SE0

E0
dJf (Xc) − σ(p)Xp(α) = η(X)p − σ(p)Xp(α).

This means that
η̃

σ̃
= η

σ
− dα, (16)

and the exterior derivativeϑ of the form η
σ

is conformally invariant. �

Theorem 2. Let (M, E) be a non-Riemannian Finsler manifold; it is a locally confor-
mally Berwald manifold if and only if the horizontal endomorphism induced by the linear
connection

∇̄XY := ∇XY + 1

2σ
(η(Y )X − γ0(X, Y )η3)

is conservative, i.e. dh̄E = 0 andϑ = 0; the sharp operator is taken with respect to the
associated Riemannian metricγ0 and∇ denotes its L´evi–Civita connection.

Proof. Suppose that (M, E) is a locally conformally Berwald manifold, then for any point
p ∈ M there exists a neighbourhoodU together with a functionα ∈ C∞(U) such that the
local conformal change ˜g = ϕg results in a Berwald manifold. According toLemma 5the
functionσ is strictly positive and theEq. (16)reduces to the form

η

σ
= dα, (17)

therefore the vanishing of the exterior derivativeϑ is clear. As it is well known from
the general theory of Wagner connections and Wagner manifolds, the Wagner connection
induced by the function−1

2α is linear. Explicitly, the Wagner endomorphism̄h and the
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canonical horizontal endomorphism̃h of the resulting Berwald manifold are related as
follows:

h̄ = h̃ + 1
2dαv ⊗ C

(for details, see[22,23]). On the other hand, asProposition 1states, the covariant derivative
operator induced bỹh must be the Ĺevi-Civita connection of the associated Riemannian
metric γ̃0. This means that

h̄ = h̃0 + 1
2dαv ⊗ C

(6)= h0 − 1
2αcJ + 1

2dJE0 ⊗ gradv0 α,

which is just the horizontal endomorphism induced by the linear connection∇̄ and, as a
Wagner endomorphism, it is conservative.

Conversely, the vanishing ofϑ implies (at least locally) the existence of a functionα

such that
η

σ
= dα. (18)

For the sake of simplicity we omit the local neighbourhood in our notations. The conformal
change with the scale functionϕ := exp◦αv results in a Finsler manifold (M, Ẽ) such that

h̃0 = h̄ − 1

2
dαv ⊗ C,

whereh̄ denotes the horizontal endomorphism induced by the linear connection∇̄. This
means that

dh̃0
Ẽ = dh̄Ẽ − Ẽ dαv = ϕ dh̄E,

where the right-hand side vanishes by the condition of conservativity. Therefore the Lévi–
Civita connection of the associated Riemannian metricγ̃0 must be the canonical connection
of the Finsler manifold (M, Ẽ) and, consequently, it is a Berwald manifold.�

Theorem 3. The scale function between conformally equivalent Berwald manifolds must
be constant unless the manifolds are Riemannian.

Proof. It is a direct consequence ofEq. (16)which reduces to the final simple form

dα = 0

in case of such a conformal change.�
Exercise.Using the formula(16)prove that the connection

¯̄∇XY := ∇XY + 1

2σ
(η(X)Y + η(Y )X − γ(X, Y )η3)
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is conformally invariant.

Remark 3. We should note that the previous construction of a conformally invariant
differential form on the underlying manifold is far from being unique. There are several
ways for the modification.

(i) In case of special Finsler manifolds such as Randers manifolds, the Riemannian part
of the starting “data” seems to be the bestassociated Riemannian metricalthough, as
we have seen above, the integral formulas provides such kind of (in general different)
geometrical structures. As an application of our results we are going to prove that the
Riemannian part has all of good properties to be an associated Riemannian structure
in the sense of the following remark.

(ii) According to the nature of the conformality problem there are two important require-
ments for the association of geometrical structures. First of all the associated Rie-
mannian metrics must be conformally equivalent in case of conformally equivalent
Finsler manifolds with a common scale function. On the other hand, the associated
metric is required to satisfy the Riemann-metrizability condition in case of a Berwald
manifold which means that the canonical linear connection of the Finsler manifold
and the Ĺevi–Civita connection coincide.

(iii) Technically we can prefer the associated Riemannian metric over the Riemann–Finsler
metric of the Finsler manifold in order to construct the gradient vector field of the
functionf := ln E0

E
by the formula

ιΘ0ω0 = −E0 df,

whereω0 is the fundamental form of the Finsler (esp. the Riemannian) manifold
(M, E0). Instead ofEq. (14)it follows that

ιΘ̃0
dJ ρ̃ + 1

2

S̃0Ẽ

Ẽ
dJ f̃ = ιΘ0 dJρ + 1

2

S0E

E
dJf − 1

2E0
‖JΘ0‖2 dαv, (19)

the norm is taken with respect to the Riemann–Finsler metricg0 – it is just the vertical
lift of the associated Riemannian metric.

(iv) As the next step we can integrate on the Riemannian indicatrices with respect to their
own oriented volume forms to introduce a functionσ0 and a differential formη0 such
that the exterior derivative of the scale function can be expressed as a difference

dα = η0

σ0
− η̃0

σ̃0
,

it is actually the original Kikuchi’s “excellent idea” (see[16]). The only requirement
for the integration is to satisfy the relation(5).

(v) We note that in case of a Wagner manifold all of these modifications give the same
final result because there is a special conformal change such that the left-hand side of
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bothEqs. (14)and (19) is identically zero. Explicitly

η

σ
= η0

σ0
,

they are just the exterior derivative of the scale function which provides the conformal
equivalence to a Berwald manifold – as we have seen above it is uniquely determined
up to an additive constant.

(vi) In what follows Randers manifolds are investigated to demonstrate how we can simplify
(or modify) the process in special cases.

3. Conformally Berwald Randers manifolds

Definition 5. Consider a Riemannian manifold (M, γ∗) together with a nonzero 1-formβ
on the underlying manifold such that

sup
v∈TM

β(v)

L∗(v)
< 1,

where

L∗(v) :=
√

γ∗(v, v)

is the norm of the tangent vectors with respect to the metricγ∗. TheRanders manifold
constructed from the Riemannian manifold (M, γ∗) by perturbation withβ is defined as a
Finsler manifold (M, E), where

L := L∗ + β

andE := 1
2L2, as usual.

Theorem4.Let(M, E)beaRandersmanifold andsuppose thatβp �= 0,then theassociated
Riemannian metric can be expressed as the combination

γ0(X, Y ) = Aγ∗(X, Y ) + Bβ(X)β(Y ),

where A and B are smooth functions on a connected open neighbourhood around the point
p ∈ M.

Proof. Consider a coordinate systemu1, . . . , un such that

(i) the coordinate vector fields form aγ∗-orthonormal system (e1, . . . , en) of tangent vec-
tors at the pointp,

(ii) in terms of these local coordinatesβ = K dun, whereK := ‖β3‖ and the sharp operator
together with the norm is taken with respect to the Riemannian partγ∗ of the initial data.
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As it is well known for any indices 1≤ i, j ≤ n − 1,

gij = L

L∗
δij − Kyi

∗y
j
∗yn

∗, gin = L

L∗
δin − Kyi

∗(yn
∗)2 + Kyi

∗,

gnn = L

L∗
δnn − K(yn

∗)3 + 2Kyn
∗ + K2,

where (y1, . . . , yn) are the dual basis of (e1, . . . , en) and

y1
∗ := y1

L∗
, . . . , yn

∗ := yn

L∗
.

Moreover,

dµp =
(

L

L∗

)(n+1)/2

dµ∗
p (20)

for the foundations of Randers manifold we can refer e.g.[1,14]. Using the diffeomorphism

j : v ∈ TpM → j(v) := L

L∗
(v)v,

it follows that∫
Bp

f : =
∫

Bp

f dµp =
∫

j−1(B∗
p)

(
L

L∗

)n (
L∗
L

)n

(f ◦ j−1) ◦ j dµp

=
∫

B∗
p

(
L∗
L

)n

(f ◦ j−1) dµp
(20)=

∫
B∗

p

(
L∗
L

)(n−1)/2

(f ◦ j−1) dµ∗
p

=
∫

B∗
p

(
L∗
L

)k+(n−1)/2

f dµ∗
p,

and, consequently,∫
Sp

f =
∫

S∗
p

(
L∗
L

)k+(n−1)/2

f (21)

provided that the functionf is homogeneous of degreek. In case of dimension 2 we have

γ0(e1, e1)
(i)= γ∗(e1, e1)

∫ 2π

0

√
1 + Kp sin v

(
1 − Kp

1 + Kp sin v
cos2 v sin v

)
dv,

γ0(e1, e2)
(i)=
∫ 2π

0

Kp√
1 + Kp sin v

cos3 v dv = 0,

γ0(e2, e2)
(i)= γ∗(e2, e2)

∫ 2π

0

√
1 + Kp sin v

(
1 − Kp

1 + Kp sin v
cos2 v sin v

)
dv
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+K2
p

∫ 2π

0

1

Kp

√
1 + Kp sin v

(1 + 2 cos2 v) sin v + 1√
1 + Kp sin v

dv,

whereKp := K(p). If

A(p) :=
∫ 2π

0

√
1 + Kp sin v

(
1 − Kp

1 + Kp sin v
cos2 v sin v

)
dv,

B(p) :=
∫ 2π

0

1

Kp

√
1 + Kp sin v

(1 + 2 cos2 v sin v) + 1√
1 + Kp sin v

dv,

then the decomposition

γ0(X, Y ) = Aγ∗(X, Y ) + Bβ(X)β(Y )

follows immediately. In case of higher-dimensional manifolds the reasoning is essentially
the same using the parameterization

r : (u, v) ∈ H ×
[
−π

2
,

π

2

]
→ r(u, v) := (ρ(u) cosv, sin v) ∈ S∗

p,

whereρ : H → s∗
p is the parameterization of the (n − 2)-dimensional unit sphere

s∗
p := Ker βp ∩ S∗

p.

Sincey1∗, . . . , yn−1∗ are surface harmonics of degree 1 constituting an orthogonal system
as the elements of the pre-Hilbert space of continuous functions on the spheres∗

p with the
usual scalar product

〈f, g〉 :=
∫

s∗p
fg,

it follows that∫
s∗p

y1
∗ = · · · =

∫
s∗p

yn−1
∗ = 0,

and ∫
s∗p

(y1
∗)2 = · · · =

∫
s∗p

(yn−1
∗ )2 = a

n − 1
,

wherea denotes the area ofs∗
p or, in an equivalent way, the area of the standard Euclidean

unit sphere of dimension (n − 2). Therefore, as an easy calculation shows

γ0(ei, ej) = 0
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provided thati �= j. On the other hand

γ0(ei, ei) = γ∗(ei, ei)
∫ π/2

−π/2

a

(1 + Kp sin v)(n−3)/2
cosn−2 v dv

− Kp

n − 1

∫ π/2

−π/2

a

(1 + Kp sin v)(n−1)/2
cosn v sin v dv,

γ0(en, en) = γ∗(en, en)
∫ π/2

−π/2

a

(1 + Kp sin v)(n−3)/2
cosn−2 v dv

− Kp

n − 1

∫ π/2

−π/2

a

(1 + Kp sin v)(n−1)/2
cosn v sin v dv

+K2
p

∫ π/2

−π/2

a

Kp(1 + Kp sin v)(n−1)/2
(1+ n

n − 1
cos2 v) sinv cosn−2 vdv

+K2
p

∫ π/2

−π/2

a

(1 + Kp sin v)(n−1)/2
cosn−2 v dv.

Note that the second term in the expression ofγ0(en, en) is the consequence of a simple
supplement. If

A(p) : =
∫ π/2

−π/2

a

(1 + Kp sin v)(n−3)/2
cosn−2 v dv

− Kp

n − 1

∫ π/2

−π/2

a

(1 + Kp sin v)(n−1)/2
cosn v sin v dv,

B(p) : =
∫ π/2

−π/2

a

Kp(1 + Kp sin v)(n−1)/2
(1 + n

n − 1
cos2 v) sin v cosn−2 v dv

+
∫ π/2

−π/2

a

(1 + Kp sin v)(n−1)/2
cosn−2 v dv,

then the decomposition

γ0(X, Y ) = Aγ∗(X, Y ) + Bβ(X)β(Y )

follows immediately. �

Remark 4. As an application of the decomposition formula, we give a new proof of the
following well-known theorem due to Matsumoto which states that the Riemannian part
of the initial data can be considered as an associated Riemannian metric in the sense of
Remark 3(ii) (see alsoRemark 3(i)).

Theorem 5. Let (M, E) be a Randers manifold and suppose that it is a Berwald manifold,
then the canonical (linear) connection and the L´evi–Civita connection of the metricγ∗
coincide.
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Proof. It is enough to prove the statement over the set of “regular” pointsp ∈ M, where
βp �= 0. Since (M, E) is a Berwald manifold the canonical horizontal endomorphismharises
from a linear connection on the underlying manifold. It is conservative, i.e. theh-covariant
derivatives of the energy function or, in an equivalent way, the fundamental functionL
vanish which implies that

dhL∗ = −dhβ.

Thereforethe formdhL∗ is linear in its second n variablesy1, . . . , yn. Proposition 1states
thath = h0, i.e. the Barthel endomorphism is induced by the Lévi–Civita connection of the
associated metricγ0. Using the previous theorem, the decomposition formula

E0 = AvE∗ + 1
2Bvβ2

follows immediately. Since dhE0 = 0,

L∗dhL∗ = − 1

Av

(
E∗ dAv + 1

2
β2 dBv + Bvβ dhβ

)

and we have thatthe formL∗ dhL∗ is quadratic in its second n variablesy1, . . . , yn. The
emphasized observations implies that dhL∗ = 0 and, consequently,h∗ = h(= h0) as was
to be stated in terms of the associated linear connections.�

Remark 5. As a direct consequence of the previous theorem, we have that the Randers
manifold (M, E) is a Berwald manifold if and only ifβ is parallel with respect to the metric
γ∗.

Lemma 6. Let (M, E) be a Randers manifold and suppose that it is a generalized Berwald
manifold, then the functionσ∗ := 1

2K2 is strictly positive or, it is identically zero and the
manifold is Riemannian.

Proof. Since (M, E) is a generalized Berwald manifold, we have a linear connection∇ on
the underlying manifold such that the indicatrix hypersurfaces are invariant under the parallel
transport. In other words, the induced horizontal endomorphismh is conservative, i.e. the
h-covariant derivatives of the energy function or, in an equivalent way, the fundamental
functionLvanish. The main result of our previous paper[27] states that this linear connection
must be metrical with respect to the associated metricalγ0. In a similar way as in the proof
of Theorem 5it follows that dhL∗ = 0 and, consequently, the formβ is parallel with respect
to the connection∇. This means that the existence of a single zero implies the functionσ∗
to be identically zero. �

Definition 6. We put

η∗ := ∇β3β − div β3

n − 1
β,
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where the sharp operator together with the divergence is taken with respect to the Riemannian
partγ∗ of the initial data and∇ denotes its Ĺevi–Civita connection.

Theorem 6. Let (M, E) be a Randers manifold and suppose that the functionσ∗ is strictly
positive, then the differential form

ϑ∗ := 1

σ∗

(
dη∗ − 1

σ∗
dσ∗ ∧ η∗

)

is conformally invariant.

Proof. A routine calculation shows that the Lévi–Civita connections of the conformally
equivalent Riemannian manifolds (M, γ̃∗) and (M, γ∗) are related as follows:

∇̃XY = ∇XY + 1
2((Xα)Y + (Yα)X − γ∗(X, Y ) grad∗ α),

whereα := ln ϕ is the logarithm of the scale function – for the sake of simplicity it is
interpreted on the underlying manifold omitting the symbol of the vertical lift.

Sinceβ̃ = ϕ1/2β the formula

ϕ−1/2(∇̃Xβ̃)(Y ) = (∇Xβ)(Y ) − 1
2(Yα)β(X) + 1

2γ∗(X, Y )β(grad∗ α) (22)

follows immediately. By the substitutionX := β3

(∇̃
β̃3̃ β̃)(Y ) = (∇β3β)(Y ) − 1

2
K2(Yα) + 1

2
β(Y )β(grad∗ α).

We note that

β̃3̃ = 1

ϕ
β̃3 = ϕ−1/2β3, K̃2 = γ̃∗(β̃3̃, β̃3̃) = 1

ϕ2
γ̃∗(β̃3, β̃3) = 1

ϕ
γ̃∗(β3, β3) = K2,

d̃iv β̃3̃ = d̃iv ϕ−1/2β3 = ϕ−1/2
(

d̃iv β3 − 1

2
β(grad∗ α)

)

= ϕ−1/2
(

div β3 + n − 1

2
β(grad∗ α)

)
, (23)

and, consequently,

(∇̃
β̃3̃ β̃)(Y ) = (∇β3β)(Y ) − 1

2
K2(Yα) + 1

n − 1

(
ϕ1/2d̃iv β̃3̃ − div β3

)
β(Y )

= (∇β3β)(Y ) − 1

2
K2(Yα) + d̃iv β̃3̃

n − 1
β̃(Y ) − div β3

n − 1
β(Y ).
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Therefore

1

K̃2

(
∇̃

β̃3̃ β̃ − d̃iv β̃3̃

n − 1
β̃

)
= 1

K2

(
∇β3β − div β

n − 1
β

)
− 1

2
dα,

i.e.

η̃∗
σ̃∗

= η∗
σ∗

− dα, (24)

and the exterior derivativeϑ∗ of the form η∗
σ∗ is conformally invariant. �

Theorem 7. Let (M, E) be a non-Riemannian Randers manifold, it is a locally confor-
mally Berwald manifold if and only if the horizontal endomorphism induced by the linear
connection

∇̄XY := ∇XY + 1

2σ∗
(η∗(Y )X − γ∗(X, Y )η3

∗)

is conservative, i.e.dh̄E = 0 andϑ∗ = 0, the sharp operator is taken with respect to the
Riemannian partγ∗ of the initial data and∇ denotes its L´evi–Civita connection.

Proof. The reasoning is the same as in the proof ofTheorem 2. �

Exercise.Using the formula(24)prove that the connection

¯̄∇XY := ∇XY + 1

2σ∗
(η∗(X)Y + η∗(Y )X − γ∗(X, Y )η3

∗)

is conformally invariant.

Remark 6. It can be easily seen from the relation(22) that

(∇Xβ)(Y ) = 1
2(Yα)β(X) − 1

2γ∗(X, Y )β(grad∗ α) (25)

is a necessary and sufficient condition for a Randers manifold to be conformal to a Berwald
manifold. If X1, . . . , Xn is a local orthonormal frame, then

div β3 =
n∑

i=1

(∇Xiβ)(Xi) = −n − 1

2
β(grad∗ α), (26)

and, consequently,

(∇Xβ)(Y ) = 1

2
(Yα)β(X) + div β3

n − 1
γ(X, Y ).
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In case ofX := β3 it follows that

1

2
(Yα) = 1

2σ∗
η∗(Y ).

Therefore

(∇Xβ)(Y ) = 1

2σ∗
β(X)η∗(Y ) + div β3

n − 1
γ∗(X, Y ), (27)

and we have thata non-Riemannian Randers manifold is a locally conformally Berwald
manifold if and only if

∇β = 1

2σ∗
β ⊗ η∗ + div β3

n − 1
γ∗,

andϑ∗ = 0. According to the formula(27)

div β3 = 1

2σ∗
η∗(β3) + n

n − 1
div β3 = 1

2σ∗
(∇β3β)(β3) + div β3,

therefore (∇β3β)(β3) = 0. By the substitutionY := β3 into (27)

(∇Xβ)(β3) = 0,

and the implication∇K = 0 follows immediately. This means that the vector fieldβ3 has
constant length with respect to the metricγ∗.

Exercise.Prove the “existence theorem of Wagner spaces” (sic) as a simple special case
of the relation (25) (for the theorem, see[2, Theorem 7].
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