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Abstract

In this paper, we are going to discuss the problem whether how we can check the conformality of a
Finsler manifold to a Berwald manifold. The method is based on a differential 1-form constructing on
the underlying manifold by the help of integral formulas such that its exterior derivative is conformally
invariant. If the Finsler manifold is conformal to a Berwald manifold, then the exterior derivative
vanishes. This gives the following necessary condition: the differential form is closed and, at least
locally, itis exact as the exterior derivative of a scale function for testing the conformality. A necessary
and sufficient condition is also given in terms of a distinguished linear connection on the underlying
manifold — it is expressed by the help of canonical data. In order to illustrate how we can simplify the
process in special cases Randers manifolds are considered with some explicit calculations.
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Introduction

It is well known due to Hashiguchi and Ich@ythat a Finsler manifold is conformal to a
Berwald manifold if and only if it is a Wagner manifoldl] (see als¢22,24]). The Wagner
manifolds form an important class of the so-called generalized Berwald manifolds admitting
Finsler connections whose horizontal part depends only on the position — more precisely
there exists a linear connection on the underlying manifold such that the indicatrix hyper-
surfaces are invariant under the parallel transport. Berwald manifolds in the classical sense
are characterized by a similar property of the canonical Berwald connection. If it has zero
(horizontal) curvature, then the Berwald manifold is called a locally Minkowski manifold.

For thetwo-dimensional conformality problerthe original result due to Wagng29]
states thah Finsler space of dimension 2 is a generalized Berwald space if and only if the
first derivative of the main scalar by the Landsberg angle gives a differential equation of
the form

Yy = f(y) @)

(see als¢13)). Itis obviously a necessary condition for a two-dimensional Finsler manifold
to be conformal to a Berwald manifold. Further important results are in Kikuchi’s paper
[11]. He found a conformally invariant Finsler connection for all Finsler spaces satisfying
a certain condition by an excellent idea and the conformal flatness was stated in terms of
this connectioras Matsumoto wrote in his papgr6]. The conformal flathess means that
the manifold is conformal to a locally Minkowski manifold. Note that a positive definite
two-dimensional Berwald manifold must be a locally Minkowski manifold unless it is Rie-
mannian (see Szals observatiorf18] and[10]). Indeed, in case of dimension 2 Kikuchi’s
results are equivalent to the Matsumoto’s equatidi§ (see alsd16]). They consist of
necessary and sufficient conditions for a two-dimensional Finsler manifithdnon-zero
Jto be conformal to a Berwald manifold. The Matsumoto’s equations are also differential
equations in terms of the standard two-dimensional setting such as the main scalar and its
derivatives with respect to special vector fields constituting the so-called Berwald frame
(for the original version, sel@,4]). Under the notations of Matsumoto’s paper, the function
Jis just the derivative of the main scalar along the parameterized indicatrix curve. In other
words, the condition provides that the right-hand side of the Wagner’s differential equation
(1) is nontrivial. According to this additional property, the system of partial differential
equations for the scale function involvéss a divisor although there always exist critical
parameters because of the periodicity of the main scalar along the indicatrix.

In case of the multidimensional Kikuchi's condition, the problem is essentially similar:
Now we assuméet W # 0, where

0 2 2\ pi
Wi = 5 LPCHBY.

Thenthere existsWJ’."‘ such that

WWik =4
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(for the citation, se¢11]). Unfortunately, the functior.2C? is homogeneous of degree
zero. This means that it attains both its (global) maximum and minimum on the tangent
spaces and all of the partial derivatives with respect to the variables. , y* vanish at
such an extremal point.

In what follows, we are going to discuss not only the problem of conformal flatness but
also themultidimensional conformality probleaf Finsler manifolds to Berwald manifolds.
The theory will be presented in terms of conformally invariant differential forms construct-
ing on theunderlying manifoldoy the help of integral formulas — the only requirement is
that we have a non-Riemannian Finsler manifold under consideration.

1. Preliminaries
1.1. Finsler manifolds

Let M be a connected differentiable manifold equipped with a funcartM — R
such that

(i) Vvoe TM \ {0} : E(v) > 0 andE(0) = 0.

(i) Eis homogeneous of degree 2, ive.c RT : E(tv) = r?E(v).
(i) Eis of classC! on the tangent manifol@M and smooth except the zero section.
(iv) Thefundamental fornw := dd;E is nondegenerate.

TheRiemann—Finsler metriof the Finsler manifold ¥, E) is defined by the formula
g(JX, JY) = w(JX, Y),

whereX, Y are vector fields oM andJ is the canonical almost tangent structure on the
tangent bundler : TM — M (for the details, sef5,6,20). The Finsler manifold is called
positive definitef gis positive definite.

Remark 1. Inwhat follows, we suppose that the Finsler manifold is positive definite without
any further comment.

Note that for any poinp € M the restrictiorg, := g|7,» is a Riemannian metric on the
“manifold” 7,M := T, M \ {0} in the usual sense. The indicatrix hypersurface at the point
pis defined as follows:

Sp = {ve T,M|L(v) = 1, whereE = $L?}.
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1.2. The gradient operator

Let a smooth function : TM — R be given. Since the fundamental foemis nonde-
generate, there exists a unique vector field gradich that

lgrade® = do.

This vector field is called the gradient ¢f Note that the gradient vector field is smooth
only on the splitted tangent manifold

TM :=TM\ {0}

In generaldifferentiability is guaranteed oveF M unless otherwise stated.

Lemma 1l ([19]). Leta be a smooth function on the underlying manifdlin
grada'E = of,

wherea := « o 7 is the vertical lift and
o TM - R, o) = v(a)

is the complete lift of the functian

1.3. Further formulag5,6,20]

Let h be the canonical horizontal endomorphism (the so-c&@kdhel endomorphisin
associated with theanonical sprays := — grad E, we have

1sw = —dE, h = 3([J, 5]+ 1).
Using the prolongation
gn(X,Y) = g(JX, JY)+ g(vX,vY), vi=1—h

ofthe Riemann—Finsler metric alohghelowered first Cartan tensaf the Finsler manifold
is defined by the formula

Co(X. Y, Z) = 3(LixT*gn)(¥, Z),
where

Jgn(X, Y) = g(JX, JY),
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and/£ denotes the Lie-derivative (with respecti) as usual. The Barthel endomorphism
determines an almost complex structéren the splitted tangent manifofdM such that

FolJ=h, Foh=-—J

Using the standard technical tools of tangent bundle differential geometry such as the vertical
and complete liftsx¥ and X© of a vector fieldX € X(M) we define the horizontal lifk"
as follows:

X" = n(x% = FX¥=x", Fx"=_-XxV

(see, e.d12,28). Asitis wellknownhinduces a (in general) nonlinear covariant derivative
operatorV on the underlying manifold:

VxY :=koTY o X,
wherex is the connection map of

Definition 1. If the induced covariant derivative operator is linear, then the Finsler manifold
is called aBerwald manifold

1.4. The associated Riemannian metric

Suppose that the manifoM is orientable and consider a volume fonne A"(M). Then
for any pointp € M we have an orientation representedryon the tangent spadg, M.
Let us define the mapping

du:peM — du, € N(T,M)
as follows:

detg(XY, X¥) if n(X1..... Xa)(p) > O,

—,/detg(XY, X‘j() otherwise

du, is called the(oriented) volume forron the tangent spadg, M. Let

de(XV, R X)Il) =

Hp = LcC dllvp

be the induced volume form on the indicatrix hypersurface which provides an orientation
for the manifoldS,. The integral of a (continuous) functidrover S, is defined as the



Cs. Vincze / Journal of Geometry and Physics 54 (2005) 454-475 459

integral of an & — 1)-form on an oriented manifold of dimensiaen- 1 as usual:

fsp si= | s

Actually, the orientation was convenient but not necessary in the definition(fatthe
citation, sed¢30, p. 150). Indeed, if we change the orientation on the manifdidhen the
orientation changes on the indicatrix hypersurface. For a moment, let us den‘_igeakmﬁ
S, the manifoldS,, equipped with different orientations, we have that

for= [ [ o= [ s

This means that the mapping

peEM — f
Sp

is well defined even if there could not be nowhere-vanishifigrm on the manifold\.

Definition 2. Let (M, E) be a positive definite Finsler manifold, tagsociated Riemannian
metricis defined by the formula

yo(X. ¥)(p) 1= f S(XV, ¥Y)

Sp

(for a similar construction, s€@1]). The Levi—Civita connection of this metric is called
theassociated linear connection of the Finsler manifold

Proposition 1 ([27]). The canonical (linear) connection of a positive definite Berwald
manifold is just the eVi—Civita connection of the associated Riemannian metric.

1.5. Conformal equivalend8] (see alsd19,24])

Two Finsler manifolds ¥, E) and (M, E) are said to beonformally equivalerif there
exists a positive smooth functian: 7M — R such that

§=9sg.
The functiong is called thescale functioror theproportionality functionIf g = ¢g, then

E = 13(C, C) = 3¢g(C, C) = ¢E,
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whereC is the so-calledLiouville vector field It is also well known due to Knebelman that
the scale function between conformally equivalent Finsler manifolds is a vertical lifp, i.e.
always can be written in the form

¢ = expoa’,

wherea" ;= «a o 7 (se€[17]). Therefore

dii, = @(p)"/? dup. 2
We have the transformation formula
S=5—a°C+E grade’ (3)

and, consequently, for any vector fietde X(M)
x" = x" — JatX" — L(Xa)C — EC(F grada’, X°) + 1XVE grada'. (4)

Lemma?2. Let(M, E) and(M, E) be conformally equivalent Finsler manifolds and suppose
that the function f is homogeneous of degrethén

fs; f=o(p)™*/? /S p f (5)

Proof. Since the form ¢, has the homogeneity property

and, by our assumptiotf,c f = kf, the Stokes theorem shows that

L 1 1
pi= ], s = [ cevdn = o [ actan

1 1 1
= d = —_— =
n+k/spLC(f ) n+k/spfﬂ” n+k/spf’

whereB,, denotes the solid indicatrix body at the ponif

Bp

L
jiveTp,M— j(v) = Z(v)v,

then we have

L\" (L\"
L= d~ = — == ] i—1 o .d~
é,,f fg},f L p /j—l(gp)(L> <L> (foj )ojdi,
-/ (5)"(foj—1)dﬂ -/ (i)n+kfdﬂ R
B, \L P s, \L g B, ”

P P

and the formuld5) follows immediately. [
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2. Conformally invariant differential forms on the underlying manifold

In what follows, we consider two conformally equivalent Finsler manifolds £) and
(M, E); letus denote byg andjy their associated Riemannian metrics, respectively. It can be
easily seen that the associated metrics are also conformally equivalent with a proportionality
function such that its vertical lifp = expoa" is just the original scale function (between
the Finsler manifolds). Using the transformation formilgfor the Riemannian manifolds
(M, yp) and (M, o) we have that

/710 = hg — %(XCJ — %dotv QC+ %djEO ® graq’, o, (6)
wherefm andhg denotes the induced horizontal structures by teei+Civita connections;

the vector field

grad) o = (gracy a)”
is just the vertical lift of the usual gradient with respect to the Riemannian metrion
the other hand, the associated spr&yandSy are related as follows:

So = Sp — a°C + Eg grad; a. (7

Itis well known that the derivative of the vertical lif with respect to an arbitrary semispray
Sgives the complete lift of the functiom This means that

SoE .. SoE 7) SoE . . Eo
— =ao° + =g ¢ + E(graq’) a)E, (8)
and, consequently,
S’oif SoE ¢ Eo
= == = E.
7 Z +a 5 (grad o) 9)

Since foranyhorizontal endomorphisin
dne’ = doV,

and the tensor fiel(ﬂfE—’é0 is conformally invariant, the formula

di,oE 1 SOE don dhoE 1SoEdjEy 1 c dyEp dyE (10)
= —_— ——=— = = —— — —_ —
E 2 E Ep E 2 E Ep 2 Ep E
is a direct consequence Bfjs. (6)and (9). We put
E 1SoEdyE E
:=dhL——SLdJ 0, f::ln—O (11)

E 2 E Ep
and the implication

E

1 1
,?):p—l—§a°d1f=>dj,7)=djp+§davAd1f (12)
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follows immediately. Consider the vector field

®:=—F grad f
satisfying the relation

tow = —Edf,

an easy calculation shows that

vew = Ed; f = 1J0]* = Ed, f(0), (13)
where the norm is taken with respect to the Riemann—Finsler nggtric
Lemma 3. The vector field/® is conformally invariant.

Proof. For any vector field{ € X(TM)

Ed,; 7)) B a6, X) = 3(J6, IX) = 0g(JO, JX).

On the other hand,df = d; f and, consequently,

Ed; 7(X) = o(Ed; £(X)) € gw(J6, X) = pg(J0, JX),

which implies that/® = J© as was to be stated.[]
Lemma 4. Keeping our previous notations it follows that

1SEg . - 1SEq 1
df=todp—57—dif = 5= 176]12 da". (14)

- d,p— 23E0
%P TS, 2 Eo

Proof. Lemma 3shows that the difference vector fighl— @is vertical,i.et_e d;p = 0
and, consequently,

1o dsp = todsp =10 dsp + 30¥(0)d; f — 3d; £(6) da”, (15)
where, as we have seen aboyg0||? = Ed; f(®). Since

daV(®) = w(grade’, ©) = —w(®, grade") = E grada’(f) @ S—=9)f
we haveEg. (14)immediately. O

Definition 3. Let us define the functioa : M — R as follows:

1
o(p) :=/ — o).
s, 2E
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Lemma 5. Let (M, E) be a generalized Berwald manifold, then the functois strictly
positive or, it is identically zero and the manifold is Riemannian.

Proof. Suppose that(p) = 0, thenJ® vanishes on the tangent spatgVl. This means
that there exists a (positive) constérguch that

1
Eir,m = ;EO\TPM,

and the functiont|r, y is quadratic. Since), E) is a generalized Berwald manifold we
have a linear connectiovi on the underlying manifold such that the indicatrix hypersurfaces
are invariant under the parallel transport, i.e.

Er,m=ETMoT,

wheret : T,M — T,M is the linear isomorphism induced by the parallel transport with
respect tdv along a curve joiningp andq. Therefore, folany pointg € M the function

-1
Eir,m = zEO\Tl,M ot

is quadratic provided, of course, that the manifold is connected. In other words, the Finsler
manifold (M, E) reduces to a Riemannian manifold such that it is homothetic (conformal
equivalence with a constant scale function) to the associated Riemannian maMifets (

— the constant is just the area of the standard Euclidean unit sphere of dimensibn

Therefore/® = 0 or, in an equivalent form, the functienis identically zero as was to be
stated. (I

Remark 2. Note again that the Wagner manifolds form an important class of the generalized
Berwald manifolds as those which are conformal to a Berwald manifold. The statement
also holds in case of a locally conformally Berwald manifold all of whose points have a
connected open neighbourhoddogether with a functiom € C*°(U) such that the local
conformal changg "= ¢g results in a Berwald manifold; notations as usual. If the function

o vanishes at a point € M then, using the local version @Emma § it also vanishes on

the neighbourhoodl, i.e. o is strictly positive or it is identically zero provided that the
underlying manifold is connected. We have an interesting alternative reasoning by the help
of Theorem 3which states that the scale function between conformally equivalent Berwald
manifolds must be constant unless they are Riemannian. This result has been proved in our
previous papej26] as the solution of the generalized Matsumoto’s problem (se¢283p

As one of the most important consequences it followsalthbugh there is no global scale
function in case of a locally conformally Berwald manifold, the linear Wagner connection
induced by the collection of the local functions is globally well defined because it involves
only the exterior derivativeg\ccording to this observation, the original proofladmma 5

works without any modification.
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Definition 4. Let us define the differential 1-form: X(M) — C°°(M) as follows:

1SE
n(X)p = [ dip(©. X%) = 2= ds FXO),
Sp 0

Theorem 1. Let(M, E) be a Finsler manifold and suppose that the functois strictly
positive then the differential form

ﬂ::i(dn—ida/\n)
o o

is conformally invariant

Proof. According toLemma 2it follows thaté = o; on the other hand, byemma 4

1SE
100, = [ dip(©. X9 = 5522 F(X) — o()X )
1SE
= [ dsp(@, X9 = 37041 FX) ~ o ()X, (e) = 1K), — o (P)X (@)
s, 0
This means that
2= —da, (16)
o o

and the exterior derivativé of the formZ is conformally invariant. ]

Theorem 2. Let (M, E) be a non-Riemannian Finsler manifold is a locally confor-
mally Berwald manifold if and only if the horizontal endomorphism induced by the linear
connection

_ 1
VXY = Vx¥ + (V)X = yo(X. V)r)

is conservativei.e. d;E = 0 and ¢ = O; the sharp operator is taken with respect to the
associated Riemannian metsig and V denotes its EVi—Civita connection

Proof. Suppose thatM, E) is a locally conformally Berwald manifold, then for any point
p € M there exists a neighbourhoattogether with a functiorx € C°°(U) such that the
local conformal change = ¢g results in a Berwald manifold. According keemma 5the
functiono is strictly positive and th&q. (16)reduces to the form

7~ da, 17)
o

therefore the vanishing of the exterior derivatifeis clear. As it is well known from
the general theory of Wagner connections and Wagner manifolds, the Wagner connection
induced by the function—%a is linear. Explicitly, the Wagner endomorphisimand the
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canonical horizontal endomorphisinof the resulting Berwald manifold are related as
follows:

h=h+3de’®C

(for details, se¢22,23). On the other hand, &roposition Istates, the covariant derivative
operator induced by must be the Bvi-Civita connection of the associated Riemannian
metricyp. This means that

I =ho+ 3da¥ ® € @ o — Lacs + 1d, Eo ® grad «,

which is just the horizontal endomorphism induced by the linear connewtiand, as a
Wagner endomorphism, it is conservative.

Conversely, the vanishing df implies (at least locally) the existence of a function
such that

LA (18)

o

For the sake of simplicity we omit the local neighbourhood in our notations. The conformal
change with the scale functign:= expoa" results in a Finsler manifoldy{, E) such that

~ =1
hozh—édaV@)C,

whereh denotes the horizontal endomorphism induced by the linear connéctidhis
means that

dj E = dE — Eda’ = ¢ d;E,
where the right-hand side vanishes by the condition of conservativity. Thereforétihe L
Civita connection of the associated Riemannian métrimust be the canonical connection

of the Finsler manifold #, E) and, consequently, it is a Berwald manifold]

Theorem 3. The scale function between conformally equivalent Berwald manifolds must
be constant unless the manifolds are Riemannian.

Proof. Itis a direct consequence Bfj. (16)which reduces to the final simple form
doe=0
in case of such a conformal changé.]

Exercise.Using the formulg16) prove that the connection

VXY 1= Vx¥ o o Y 00X = X V)
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is conformally invariant.

Remark 3. We should note that the previous construction of a conformally invariant
differential form on the underlying manifold is far from being unique. There are several
ways for the modification.

(i)

In case of special Finsler manifolds such as Randers manifolds, the Riemannian part
of the starting “data” seems to be the bassociated Riemannian metatthough, as

we have seen above, the integral formulas provides such kind of (in general different)
geometrical structures. As an application of our results we are going to prove that the
Riemannian part has all of good properties to be an associated Riemannian structure
in the sense of the following remark.

(i) According to the nature of the conformality problem there are two important require-

ments for the association of geometrical structures. First of all the associated Rie-
mannian metrics must be conformally equivalent in case of conformally equivalent

Finsler manifolds with a common scale function. On the other hand, the associated
metric is required to satisfy the Riemann-metrizability condition in case of a Berwald

manifold which means that the canonical linear connection of the Finsler manifold

and the levi-Civita connection coincide.

(iii) Technically we can prefer the associated Riemannian metric over the Riemann—Finsler

metric of the Finsler manifold in order to construct the gradient vector field of the
function f := In £ by the formula

Legwo = _EO d.ﬁ

where wg is the fundamental form of the Finsler (esp. the Riemannian) manifold
(M, Ep). Instead ofEq. (14)it follows that
. 15E
Vo d —_——a
oo WPt 5

~ 1S0E
dyf =1g,dsp+ - —

1
dyf — — |1 JOo]|? dat” 19
5% 7 f 2EOII oll“do”, (19)

the norm is taken with respect to the Riemann—Finsler mggriit is just the vertical
lift of the associated Riemannian metric.

(iv) Asthe next step we can integrate on the Riemannian indicatrices with respect to their

v)

own oriented volume forms to introduce a functignand a differential fornmg such
that the exterior derivative of the scale function can be expressed as a difference

it is actually the original Kikuchi’s “excellent idea” (s¢&6]). The only requirement

for the integration is to satisfy the relati@b).

We note that in case of a Wagner manifold all of these modifications give the same
final result because there is a special conformal change such that the left-hand side of
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bothEgs. (14)and (19) is identically zero. Explicitly

n_no

’

o 09

they are just the exterior derivative of the scale function which provides the conformal
equivalence to a Berwald manifold — as we have seen above it is uniquely determined
up to an additive constant.

(vi) Inwhatfollows Randers manifolds are investigated to demonstrate how we can simplify
(or modify) the process in special cases.

3. Conformally Berwald Randers manifolds

Definition 5. Consider a Riemannian manifold/( y,) together with a nonzero 1-form
on the underlying manifold such that

B(v)
1,
o La() ~

where

Li(v) := v y«(v, v)

is the norm of the tangent vectors with respect to the mefricThe Randers manifold
constructed from the Riemannian manifold,(y,) by perturbation withg is defined as a
Finsler manifold {4, E), where

L:=L,+§
andE := 3L?, as usual.

Theorem 4. Let(M, E) be a Randers manifold and suppose fhiat~ 0,then the associated
Riemannian metric can be expressed as the combination

n(X, Y) = Ay(X, Y) + BB(X)B(Y),

where A and B are smooth functions on a connected open neighbourhood around the point
peM.

Proof. Consider a coordinate system, . .., u” such that

(i) the coordinate vector fields formya-orthonormal systeneg, ..., e,) of tangent vec-
tors at the poinp,

(ii) interms of these local coordinatgs= K du”, wherek := ||*| and the sharp operator
together with the norm is taken with respect to the Riemanniarypafthe initial data.
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As itis well known for any indices ¥ i, j <n — 1,

L o L . .
8ij = 7~ 8ij — Ky, yiyl, 8in = - 8in — KyLOM)? + Ky,
* *

L
8nn = L_8nn - K(y:f)g + 2Ky'; + KZ,
ES

where ¢, ..., y") are the dual basis o#{, ..., e,) and

1. n .
Ve i= S, Y=

Ly Ly

Moreover,

L (n+1)/2
a=(1) @ (20)

for the foundations of Randers manifold we can referf@.d4]. Using the diffeomorphism
. . L
jiveT,M— j(v) = L—(v)v,

it follows that

L\" /[L.\"
= du, = — i oji Hoijd
/191,f /131,f MU p /;1(32)(14*) <L> (foj o U p
L, n _ 20) L, (n—1)/2 -~ i
=/B (%) oo, ® /B (%) e

L, k+(n—-1)/2
=/ (—) [y,
By

L
and, consequently,

o (8

provided that the functiohis homogeneous of degr&eln case of dimension 2 we have

2
@ / - K .
)/0(61, 61) = )/*(e‘]_, 6]_)'/(; 1+ Kp SIin v <1 — ]_—}—K—ppsn’]l) COS2 v SIN U) dU,

cos vdv = 0,

2
Q) Kp
e1,e2) = _—
voles, e2) /0 V1+Kpsinv
yo(e2 eZ)Qy(eg ez)/ZH1/1+K sinv 1—Lco§vsinv dv
’ e r 1+K,sinv
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2 [&" 1 . 1
+Kp/ (14 2cog v)sin v+ —————db,
o K,J/1+K,sinv

V1+K,sinv

whereK, .= K(p). If

27

K
A(p) = J1+K,sinv[1———2  covsinv) dv,
(») /(; + K sl v< 14K, sinv v Si v) v

1
(142cof vsinv) + ——dv,

2 1
5= | . .
o Kp/1+K,sinv JV1+ K, sinv

then the decomposition

W(X, Y) = Ay(X, Y) + BB(X)B(Y)

follows immediately. In case of higher-dimensional manifolds the reasoning is essentially
the same using the parameterization

r:(u,v)eHx[—g,z

2] — r(u, v) := (p(u) cOS, sinv) € 5%,

wherep : H — s, is the parameterization of the ¢ 2)-dimensional unit sphere
sy, 1= Ker g, NSy,

Sinceyl, ..., y"~1 are surface harmonics of degree 1 constituting an orthogonal system
as the elements of the pre-Hilbert space of continuous functions on the sptvith the
usual scalar product

(£ &)= /S 18

it follows that

and

a
(yl)2:“.:/‘(yn—12:_’
/.;7‘, * s;; * n—1

wherea denotes the area 6f, or, in an equivalent way, the area of the standard Euclidean
unit sphere of dimensiom (— 2). Therefore, as an easy calculation shows

yo(ei, e;) =0
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provided that # j. On the other hand
/2

C o) — o a -2
VO(Et, Et) - y*(ez, el) 2 (1+ Kp sin U)(n—3)/2 cod vdv
Y i a cog v sinvdv
n—1J_np2 1+ K, sinv)t-12 ’
/2 a )
volen, en) = vi(en, en) a2 1+ K, sin v)("—3)/2 cos ™ “ vdv
- Kp i a cog v sinvdv
n—1J_z2@+K, sinv)-1)/2
/2 a n
K2 : 1 co< v) sinvcod 2 vd
* p/—n/z K,(1+ K, sin v)(”—l)/z( +n—1 v)sinv vev

) /2 a )
K - cos'™“ vdv.
TRy /—n/z (1+ K, sin v)r—1)/2 i

Note that the second term in the expressiongté,,, e,) is the consequence of a simple
supplement. If

. /2 4 i
A(p) 1= /_ﬂ/z AT K, sin o) 972 cod < vdv
_nK_pl /_7:/22 arx, sciln IV cos' v sin vdv,
B(p): = /—7:/22 K0T K,,asin U)(n—l)/2(1+ - i 1 cog v) sinv cod 2 vdv
+/j/22 aTK, s?n = cod 2 vdv,

then the decomposition

vo(X, Y) = Ay(X, Y) + BB(X)B(Y)
follows immediately. [

Remark 4. As an application of the decomposition formula, we give a new proof of the
following well-known theorem due to Matsumoto which states that the Riemannian part
of the initial data can be considered as an associated Riemannian metric in the sense of
Remark J(ii) (see alsdRemark J(i)).

Theorem 5. Let(M, E) be a Randers manifold and suppose that it is a Berwald manifold,
then the canonical (linear) connection and thevi=Civita connection of the metrig.
coincide.
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Proof. Itis enough to prove the statement over the set of “regular” pgirésM, where

By # 0.Since (4, E)is a Berwald manifold the canonical horizontal endomorphismises
from a linear connection on the underlying manifold. It is conservative, i.eh-ttevariant
derivatives of the energy function or, in an equivalent way, the fundamental furiction
vanish which implies that

dhL. = —dnp.

Thereforethe formdn L, is linear in its second n variables, . . ., y". Proposition Istates
thath = hg, i.e. the Barthel endomorphism is induced by tlewiCivita connection of the
associated metrigy. Using the previous theorem, the decomposition formula

Eo= AVE, + 3B'p?

follows immediately. Sinceg¥o = 0,
Lonl, = —— (E,dAY + Sp2dB" + B'pd
«OhLlyx = AV * + 2,3 + B'BdnB

and we have thahe formL, dnL, is quadratic in its second n variableg, ..., y". The
emphasized observations implies thaLgd = 0 and, consequently,, = h(= hg) as was
to be stated in terms of the associated linear connectidns.

Remark 5. As a direct consequence of the previous theorem, we have that the Randers
manifold (M, E) is a Berwald manifold if and only iB is parallel with respect to the metric

Ve

Lemma 6. Let(M, E) be a Randers manifold and suppose that it is a generalized Berwald
manifold then the functiom, := 3 K2 is strictly positive or, it is identically zero and the

-2
manifold is Riemannian.

Proof. Since (M, E) is a generalized Berwald manifold, we have a linear conne&tion

the underlying manifold such that the indicatrix hypersurfaces are invariant under the parallel
transport. In other words, the induced horizontal endomorphigconservative, i.e. the
h-covariant derivatives of the energy function or, in an equivalent way, the fundamental
functionL vanish. The main result of our previous paf#t] states that this linear connection
must be metrical with respect to the associated metpgdh a similar way as in the proof

of Theorem 5t follows that d, L. = 0 and, consequently, the forgris parallel with respect

to the connectioV. This means that the existence of a single zero implies the fungtion

to be identically zero. O

Definition 6. We put

div ¢
n—1

Mx = vﬂﬁﬂ - ﬂ’
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where the sharp operatortogether with the divergence is taken with respectto the Riemannian
party, of the initial data and’ denotes its Evi—Civita connection.

Theorem 6. Let(M, E) be a Randers manifold and suppose that the funetjois strictly
positive, then the differential form

1 1
Oy = — <d;7* — U—dcr* A n*>

Ox *

is conformally invariant.

Proof. A routine calculation shows that theeli—Civita connections of the conformally
equivalent Riemannian manifold&/( 7,) and (M, y,) are related as follows:

Tx¥ = Va¥ + J(Xe)Y + (Yo)X — y(X. ¥) grad, o),

wherea :=In ¢ is the logarithm of the scale function — for the sake of simplicity it is
interpreted on the underlying manifold omitting the symbol of the vertical lift.
SinceB = ¢'/?p the formula

o YA (VxP)Y) = (VxB)(Y) — 3(Ya)B(X) + Sv:(X. Y)B(grad, o) (22)

follows immediately. By the substitutioki := p*
. 1, 1
(Vg B)(Y) = (Vg B)(Y) — EK (Yo) + Eﬁ(Y)ﬁ(grad* a).
We note that

~z 1. ~ ~3 e 1
Fr=_F=ePF K== 5

~y o~ 1
B, BY) = 5?*(/3”,&1) = K?,
div = divp-Y2gF = 112 (dTv g —ﬂ(grad* a)>
. _1/2 . f n — 1
=0 (dIV B" + Tﬁ(gracL a)) , (23)

and, consequently,

@A) = (VpAT) ~ 5K () + %1 (o¥2div B — div §°) p()

div ,3tI

= (VpAN) ~ SK2(re) + —ﬁ(Y) A(Y).
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Therefore

1 (o o divBi.\ 1 div B 1
F(Vﬁﬁﬁ_mﬁ>_ﬁ<vﬂ:ﬂ_n—1’3>_§d""

De e g, (24)
Oy Oy

and the exterior derivativé, of the formg—: is conformally invariant. [

Theorem 7. Let(M, E) be a non-Riemannian Randers manifold, it is a locally confor-
mally Berwald manifold if and only if the horizontal endomorphism induced by the linear
connection

— 1
VxY = VxY 4 o—.(V)X = (X, Y)nt)
ES

is conservative, i.ed; E = 0 and 9, = 0, the sharp operator is taken with respect to the
Riemannian pary, of the initial data andvV denotes its eVi—Civita connection.

Proof. The reasoning is the same as in the proofloéorem 2 O

Exercise.Using the formulg24) prove that the connection
= 1 "
VXY = V¥ 4 o (0(X)Y + 0a(N)X — ya(X. V)1
*

is conformally invariant.

Remark 6. It can be easily seen from the relati(2?) that

(VxB(Y) = 5(Ya) B(X) — 57:(X, Y)B(grad, «) (25)
is a necessary and sufficient condition for a Randers manifold to be conformal to a Berwald
manifold. If X1, ..., X, is a local orthonormal frame, then
. . -1
div 7 = ) (Vx,B)(X)) =~~~ Blgrad «), (26)

i=1
and, consequently,

div B¢
n—1

(VXA = 0@ + Ly, 7).
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In case ofX := g it follows that

0@ = ().

O

Therefore

1 div g*

i
20, BX)n.(Y) + P

and we have that non-Riemannian Randers manifold is a locally conformally Berwald
manifold if and only if

(VxB)(Y) =

1 div ¢
B RN+

V =
p 20, n—1

Vo

andv, = 0. According to the formulé27)

. 1 . 1 .
div 7 = () + —— div fF = S (Vep)(F) + div §,
20, n—1 20,
therefore ¥4: 8)(8%) = 0. By the substitutiory := * into (27)

(VxB)(B*) = 0,

and the implicatiorV K = 0 follows immediately. This means that the vector figfchas
constant length with respect to the metyic

Exercise.Prove the “existence theorem of Wagner spaces” (sic) as a simple special case
of the relation (25) (for the theorem, sigg Theorem 7]
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